12/28/21, 12:47 PM Load Testing using Tsung | by Helpshift Engineering Team | helpshift-engineering | Medium

Load Testing using Tsung

By Swaroop C H & Divyanshu

@ Helpshift Engineering Team C) Q

May 1,2014 - 5 min read

Background

Elasticsearch is one of the pillars of the Helpshift platform. We were adding a new

feature related to live notifications for new issues, so we decided to use the new

distributed percolator engine introduced in Elasticsearch 1.0. Before jumping into using

percolators, we wanted to do load-testing to get an idea of the performance.

The best load-testing tool that our colleagues recommended was Tsung — it is an open

source tool written in Erlang.

Note: Percolator engine feature is an “inverse” of a search engine. Usually, you register
data and send search queries and you get back results containing data. In a percolator
engine, you register queries and send data and you get back results containing queries.
This is useful when you want to trigger events for new data that match queries of

interest. For more information, see the Elasticsearch reference on percolators.

Installation

Installing Tsung on Linux is fairly straight-forward.
The installation steps we followed for Tsung version 1.5.0 are:

On Ubuntu Linux:

Ubuntu's tsung package version is 1.4.2,
so we have to compile it to get version 1.5.0
sudo apt-get install build-essential debhelper \

https://medium.com/helpshift-engineering/load-testing-using-tsung-ef26a662929b

http://www.swaroopch.com/
https://twitter.com/rdivyanshu
https://medium.com/@helpshift_tech?source=post_page-----ef26a662929b-----------------------------------
https://medium.com/@helpshift_tech?source=post_page-----ef26a662929b-----------------------------------
https://medium.com/m/signin?actionUrl=%2F_%2Fapi%2Fusers%2F1a0cf73de31c%2Flazily-enable-writer-subscription&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fhelpshift-engineering%2Fload-testing-using-tsung-ef26a662929b&user=Helpshift+Engineering+Team&userId=1a0cf73de31c&source=post_page-----ef26a662929b---------------------subscribe_user--------------
https://medium.com/helpshift-engineering/load-testing-using-tsung-ef26a662929b?source=post_page-----ef26a662929b-----------------------------------
http://www.elasticsearch.org/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-percolate.html
http://tsung.erlang-projects.org/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-percolate.html
http://tsung.erlang-projects.org/user_manual/installation.html

12/28/21, 12:47 PM Load Testing using Tsung | by Helpshift Engineering Team | helpshift-engineering | Medium

erlang-nox erlang-dev \
python-matplotlib gnuplot \
libtemplate-perl

wget https://github.com/processone/tsung/archive/v1.5.0.tar.gz

tar —xvzf v1.5.0.tar.gz

cd tsung-1.5.0

./configure

make

make deb

cd ..

sudo dpkg —-i tsung_1.5.0-1_all.deb

On Arch Linux:

sudo pacman -S ——needed base-devel

https://aur.archlinux.org/packages/tsung/

wget https://aur.archlinux.org/packages/ts/tsung/tsung.tar.gz
tar —xvzf tsung.tar.gz

cd tsung

makepkg -si

Install dependencies for tsung_stats.pl
sudo pacman -S perl-template-toolkit
Run tsung -v to check that tsung is indeed installed.

Getting started with Tsung

Note: Do keep the Tsung user manual open for reference when you are trying this out.

Creating a basic Tsung load-test is just creating a XML file:

<?xml version="1.0" encoding="utf-8"7>
<!DOCTYPE tsung SYSTEM "/usr/share/tsung/tsung-1.0.dtd" []>
<tsung loglevel="warning">

<clients>
<client host="localhost" cpu="2" maxusers='"30000000"/>
</clients>

<servers>
<server host="localhost" port="9200" type="tcp"/>

https://medium.com/helpshift-engineering/load-testing-using-tsung-ef26a662929b 2/9

http://tsung.erlang-projects.org/user_manual/index.html

12/28/21, 12:47 PM Load Testing using Tsung | by Helpshift Engineering Team | helpshift-engineering | Medium
</servers>

<load>
<arrivalphase phase="1" duration="1" unit="minute'>
<users arrivalrate="5" unit="second"/>
</arrivalphase>
</ load>

<sessions>
<session name="es_load" weight="1" type="ts_http">
<request>
<http url="/fooindex/issue/_search"
method="GET"
contents_from_file="query.json" />
</request>
</session>
</sessions>
</tsung>

If you want to sample the actual traffic being generated to make sure it looks correct, use

dumptraffic="true" attribute on the top-level tsung tag, but do not use this for actual

testing, because it slows down Tsung to a crawl.

Contents of query.json is:

{"size":10,"query":{"filtered":{"query":{"match_all":{}}}}}

Running the tsung is:

tsung —f basic.xml start

It takes some time to generate reports after the load is done, so be patient — for
example, if you run the actual load-testing for 1 minute, then tsung finishes running in

about 2.5 minutes.

You can watch it’s progress by tailing the tsung.log file in the output directory it

mentions when you start it:

https://medium.com/helpshift-engineering/load-testing-using-tsung-ef26a662929b 3/9

http://tsung.erlang-projects.org/user_manual/conf-file.html

12/28/21, 12:47 PM Load Testing using Tsung | by Helpshift Engineering Team | helpshift-engineering | Medium

$ tsung —-f basic.xml start

Starting Tsung

"Log directory is: /home/helpshift/.tsung/log/20140430-1126"
In another shell:

$ tail —f /home/helpshift/.tsung/log/20140430-1126/tsung. log
stats: dump at 1398838905

stats: users 0 1

stats: session 46 9.011442764945654 20.867107440483167
148.7548828125 4.35986328125 0 0

stats: users_count 46 46

stats: finish_users_count 46 46

stats: request 44 7.090836958451704 20.332727527523975
140.344970703125 2.416015625 0 0

stats: page 44 7.090836958451704 20.332727527523975 140.344970703125
2.416015625 0 0

stats: connect 44 0.9098455255681818 0.21548106577396298
1.320068359375 0.364013671875 0 0

stats: size_rcv 9328 9328

stats: size_sent 13992 13992

stats: connected 0 0

stats: 201 44 44

#...

Once tsung finishes running, you can generate a report using:

mkdir basic_output

cd basic_output

/usr/lib/tsung/bin/tsung_stats.pl ——stats
/home/helpshift/.tsung/log/20140430-1126/tsung. log
chromium graph.html # Or your favorite browser

You should see some pretty graphs in the html page. Take some time to become familiar

with them. Example graphs are:

https://medium.com/helpshift-engineering/load-testing-using-tsung-ef26a662929b 4/9

12/28/21, 12:47 PM Load Testing using Tsung | by Helpshift Engineering Team | helpshift-engineering | Medium

Dynamic requests

If you want to generate some random input with each query, you can use variables.

For example, we wanted to register a lot of queries with the percolator engine under

different document-ids:

<?xml version="1.0" encoding="utf-8"7>
<!DOCTYPE tsung SYSTEM "/usr/share/tsung/tsung-1.0.dtd" []>
<tsung loglevel="warning">

<clients>
<client host="localhost" cpu="2" maxusers="30000000" />
</clients>

<servers>
<server host="localhost" port="9200" type="tcp"/>
</servers>

<load>
<arrivalphase phase="1" duration="1" unit="minute'>
<users arrivalrate="5" unit="second"/>
</arrivalphase>
</ load>

<sessions>
<session name="es_load" weight="1" type="ts_http">
<setdynvars sourcetype="random_string" length="20">
<var name="docid"/>
</setdynvars>

https://medium.com/helpshift-engineering/load-testing-using-tsung-ef26a662929b 5/9

12/28/21, 12:47 PM Load Testing using Tsung | by Helpshift Engineering Team | helpshift-engineering | Medium

<request subst="true">

<http url="/fooindex/.percolator/%%_docid%%"

method="PUT"
contents_from_file="variable.json" />
</request>
</session>
</sessions>
</tsung>

The queries JSON file is:

{
"query":
{
;filtered":
"filter":
{
"and": [
{

"term":

{

by
¥
{

Iltagsll: Iliosll

"term":

{

by
}]

"tags": "high_paying_customer

by

uery':
"match_all":
{}
+
+

by
}

As before, run tsung and generate stats file:

https://medium.com/helpshift-engineering/load-testing-using-tsung-ef26a662929b

6/9

12/28/21, 12:47 PM Load Testing using Tsung | by Helpshift Engineering Team | helpshift-engineering | Medium

$ tsung -f variable.xml start
Starting Tsung
"Log directory is: /home/helpshift/.tsung/log/20140430-1151"

$ mkdir variable_output && cd variable_output

$ /usr/lib/tsung/bin/tsung_stats.pl ——stats
/home/helpshift/.tsung/log/20140430-1151/tsung. log
chromium graph.html # Or your favorite browser

Distributed Tsung

To run Tsung across machines, you have to:

1. Install Erlang and Tsung on all the machines — make sure all machines have the

same versions of both Erlang and Tsung

2. Open ports for access in the machines to each other : port range 0-65535

3. Configure hostname on both machines for each other, because the tsung
configuration demands host names and not ips, and those machines need to know

how to talk to each other using those host names.

Now expand the client list in the tsung configuration xml file:

<?xml version="1.0" encoding="'utf-8"7>
<IDOCTYPE tsung SYSTEM "/usr/share/tsung/tsung-1.0.dtd" []>
<tsung loglevel="warning">

<clients>
<client host="t1" cpu="2" maxusers="30000000"/>
<client host="12" cpu="2" maxusers='"30000000"/>
</clients>

<servers>
<server host="localhost" port="9200" type="tcp"/>
</servers>

<load>
<arrivalphase phase="1" duration="1" unit="minute'>
<users arrivalrate="5" unit="second"/>
</arrivalphase>
</load>

https://medium.com/helpshift-engineering/load-testing-using-tsung-ef26a662929b 7/9

http://tsung.erlang-projects.org/user_manual/faq.html#can-t-start-distributed-clients-timeout-error

12/28/21, 12:47 PM Load Testing using Tsung | by Helpshift Engineering Team | helpshift-engineering | Medium

<sessions>
<session name="es_load" weight="1" type="ts_http">
<request>
<http url="/fooindex/issue/_search"
method="GET"
contents_from_file="basic.json" />
</request>
</session>
</sessions>
</tsung>

Running and generating graphs is as same as before.

Additional Notes

If you want to generate more than one kind of query, then use sessions and specify

multiple requests.

If you're generating a large number of requests, ensure that maxusers attribute of
client is high (see above). Relatedly, ensure that the ulimit for file descriptors is high

on the client machines as well.

If you want more flexibility in generating the body of the requests, then you will need to

write Erlang code and use the %% sigil, example:

<sessions>
<session name="app_event" weight="9" type="ts_http">
<request name="start" subst="true">
<http url="/some/api/"
method="POST"
contents="%%api_payloads:something_happeneds%%" />
</request>
</session>
</sessions>

Postscript
In the end, we realized that adding a lot of percolators has a performance hit on regular
search queries, so we decided to have a separate percolator cluster where we only

register our search queries and make percolator api calls, no data is stored. Having

https://medium.com/helpshift-engineering/load-testing-using-tsung-ef26a662929b 8/9

http://tsung.erlang-projects.org/user_manual/conf-sessions.html

12/28/21, 12:47 PM Load Testing using Tsung | by Helpshift Engineering Team | helpshift-engineering | Medium
separate clusters ensures the performance is not degraded and ensures scalability of

speed for both searches and live notifications.

If you're interested in working with Erlang, Tsung, Elasticsearch and related topics, we

are hiring, join us!

Elasticsearch Benchmark

Download on the GETITON
@& App Store " Google Play

https://medium.com/helpshift-engineering/load-testing-using-tsung-ef26a662929b 9/9

https://www.helpshift.com/about/careers/
https://medium.com/helpshift-engineering/tagged/elasticsearch
https://medium.com/helpshift-engineering/tagged/benchmark
https://medium.com/?source=post_page-----ef26a662929b-----------------------------------
https://medium.com/about?autoplay=1&source=post_page-----ef26a662929b-----------------------------------
https://medium.com/new-story?source=post_page-----ef26a662929b-----------------------------------
https://help.medium.com/hc/en-us?source=post_page-----ef26a662929b-----------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----ef26a662929b-----------------------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----ef26a662929b-----------------------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----ef26a662929b-----------------------------------

